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Abstract. The zeroth, second and fourth frequency sum rules of the transverse stress auto-
correlation function of Rb have been evaluated for six thermodynamic states along the liquid–
vapour co-existence curve by using the Ashcroft pseudo-potential and the corresponding pair
correlation function obtained by molecular dynamics simulation. The numerical results for the
sum rules thus obtained and a model for the memory function appearing in the Mori formalism
are used to calculate the shear viscosity. The results obtained have been used to compare with
the experimental results and with those of Kahl and Kambayashi. It is found that our method
provides almost quantitative explanation for the density and temperature dependence of the shear
viscosity of expanded rubidium.

1. Introduction

Recently we have studied [1] density and temperature dependence of the velocity
auto-correlation function and self-diffusion coefficient of expanded rubidium for six
thermodynamic states using only the interaction potential as input. For the interaction
potential we employed the Ashcroft psuedo-potential [2] with Ichimaru–Utsumi [3]
screening. It was found that our model for the self-diffusion coefficient provided a
explanation for its density and temperature dependence as judged by comparing our results
with experimental/molecular dynamics [4] data. However, at present no similar study exists
for predicting the shear viscosity of expanded metal. Therefore, in the present work we
extend our work for the study of thermodynamic state dependence of the shear viscosity
of expanded rubidium. For the calculation of shear viscosity we used the Green–Kubo
relation which expresses it as a time integral of the transverse stress auto-correlation (TSC)
function. The time evolution of the transverse stress auto-correlation has been studied
using Mori’s memory function formalism [5]. For the memory function we have used a
hyperbolic secant form which was proposed earlier [6]. The parameters of the potential have
been related to the zeroth, second and fourth frequency sum rules of frequency spectrum
of transverse stress auto-correlation function. The numerical results for these sum rules are
obtained for six thermodynamics states of the expanded rubidium. The results obtained for
the shear viscosity have been compared with experimental data [7] and the results of Kahl
and Kambayashi [8]. It has been found that our method provides a good description of the
variation of viscosity with density and temperature.

The paper is organized as follows. In the following section we present the theoretical
formalism. Calculations and results are given in section 3. The paper is concluded with a
summary in section 4.
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2. Theoretical formalism

For a classical system the transverse stress variable is defined as

Jxy(t) =
N∑
i=1

[mvix(t)viy(t)+ Fiyxi(t)] (1)

where vix(t) and xi(t) are thex component of the velocity and the position of theith
particle, respectively, at timet . Fiy is they component of the force on theith particle. The
short-time expansion of the TSC function, defined as

S(t) = 〈Jxy(t)Jxy(0)〉 (2)

is given by

S(t) = S0− S2
t2

2!
+ S4

t4

4!
. . . (3)

whereS0, −S2 andS4 are called the zeroth, second and fourth frequency moments of the
TSC function. The expressions forS0, S2 andS4 have already been given in the work of
Tankeshwaret al [6]. These involve the interaction potential and static correlation function
up to four particles. The Green–Kubo formula for the shear viscosityη is given by

η = 1

V kBT

∫ ∞
0
S(t) dt (4)

wherekB , V andT are the Boltzmann constant, volume and temperature of the system. For
the calculation of the time evolution of the time correlation function,S(t), for all time we
express it in terms of the memory function using Mori’s equation of motion which is given
as

dS(t)

dt
= −

∫ t

0
S(τ)M(t − τ) dτ. (5)

Defining the Fourier–Laplace transform as

S̃(ω) = i
∫ ∞

0
exp(−iwt)S(t) dt (6)

we obtain from (5)

S̃(ω) = − S(t = 0)

ω + M̃(ω) . (7)

Using (4) and (7), we obtain

η = i

V kBT

S0

M̃(0)
. (8)

Thus the problem of calculatingS(t) is now reduced to the evaluation of the memory
function. Though there exists a microscopic expression for the MF in terms of the projection
operator, its calculation based on the mode coupling approach [9] for any density and
temperature is much more involved. In the present work we use a phenomenological form
[10] for the memory function, proposed earlier [6], which is given as

M(t) = a sech(bt). (9)

This memory function behaves as Gaussian at small times and as simple exponential at
long times. The parametersa andb are determined so that short-time properties are exactly
satisfied. It is found that

a = δ1 = S2/S0 (10a)
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and

b2 = δ2 = S4/S2− S2/S0. (10b)

The memory function given by (9) is a solution of a nonlinear equation given as

d2M(t)

dt2
− b2M(t)+ 2b2

a2
M3(t) = 0. (11)

The above equation is derivable [11, 12] from the Mori equation of motion by employing
two approximations for the higher-order memory function, though arguable. The merits
and demerits of the memory function (9) have been studied in detail by Tankeshwar and
Pathak [13] and Leeet al [14]. The analytical results [13] obtained for the time correlation
function using the hyperbolic secant memory have demonstrated the effect of nonlinearity
incorporated through (11). The above memory function has already been used [15] to
study the time dependence of the stress auto-correlation function for Lennard-Jones fluids
for various thermodynamic states. It was found that it provides a reasonable agreement
with the simulation data forS(t) at short and intermediate times. The error introduced in
estimating the shear viscosity due to long-time values ofS(t) was not found to be significant
except near the triple point of Lennard-Jones fluids.

Equations (7) and (9) provide an expression for the shear viscosity given as

η = 2

π
(n/kBT )(S

2
0/S2)(S4/S2− S2/S0)

1/2 (12)

wheren is the number density. On the other hand if we use a Gaussian model forM(t) we
find thatη is (π/2)1/2 times that given by (12). In order to calculateη from (12) we need
to knowS0, S2 andS4. The numerical results for these and the shear viscosity are given in
the next section.

Table 1. TemperatureT and mass densityρ of six Rb states I–VI investigated in the present
study. σ andε are the parameters of potentials.

T ρ σ ε (ergs)
State (K) (g cm−3) (A0) ×10−12

I 350 1.460 4.197 862 0.075 198 52
II 373 1.440 4.196 285 0.075 672 48
III 1073 1.130 4.107 260 0.087 710 05
IV 1373 0.980 4.041 256 0.098 709 86
V 1673 0.830 3.950 153 0.116 712 9
VI 1873 0.640 3.765 076 0.161 359 0

3. Calculations and results

The numerical results for zeroth, second and fourth sum rules of the transverse stress auto-
correlation function are obtained for six thermodynamic states of expanded Rb. These
sum rules use the interaction potential, pair and triplet correlation function as inputs. For
the interaction potential we have used the Ashcroft pseudo-potential with Ichimaru–Utsumi
screening. The details of the evaluation of the potential and its derivatives are given in our
earlier work [1] and also by Kahl and Kambayashi [8]. The thermodynamic states chosen in
the present work, the values ofε, the well depth of the potential, andσ , the position of the
first zero of potential, are given in table 1. The corresponding pair correlation function is



6188 S K Sharma and K Tankeshwar

taken from the work of Kahl and Kambayashi. For the triplet correlation function we have
used a superposition approximation. This approximation does not introduce a significant
error in the numerical values of total sum rules as has earlier been demonstrated [15]. In
the present work we neglect the quadruplet contribution to the fourth sum rule as this is not
important [6] in determining the shear viscosity of the system. The numerical integration
involved in the evaluation of sum rules is done using the Gauss-quadrature method. The
accuracy of our numerical results for sum rules is better than 5%. The results for these are
given in table 2 whereSnm represents them-body contribution to thenth frequency sum
rule. From table 2 it is noted that the three-body contribution is quite appreciable. The
ratio of the static triplet contribution to the pair contribution to the second and fourth sum
rules increases as one moves from critical to triple point. This ratio ranges from about 15
to 60% and from 6 to 35% for the second and fourth sum rules, respectively.

Table 2. Values of the frequency moments of the TSC function for six thermodynamic states.
Snm represents them-body contribution to thenth sum rule.

S0 S22 S23 S42× 10−3 S43× 10−3

State (ε2) (ε3m/σ 2) (ε3m/σ 2) (ε4m/σ 4) (εm2/σ 4)

I 9.2651 1541.8 −999.30 459.690 −166.590
II 9.5547 1611.5 −988.73 494.690 −167.750
III 16.784 2852.9 −770.63 1560.30 −184.730
IV 16.950 2995.6 −644.21 1700.30 −191.170
V 14.694 1692.7 −275.54 899.610 −55.237
VI 8.0106 744.28 −102.47 260.770 −14.293

Table 3. Shear viscosity,η, in centipoise for six thermodynamic states of Rb.η represents
results obtained by using (11).ηexpt. andηKK are experimental and MD results, respectively.
η2 represents shear viscosity obtained from (11) by including only the two-body contribution to
the sum rules.

State η η2 ηexpt. ηKK

I 0.484 0.112 0.476 0.607
II 0.412 0.1097 0.433 0.528
III 0.136 0.104 0.136 0.107
IV 0.0947 0.0821 0.112 0.115
V 0.103 0.0984 0.0996 0.102
VI 0.0561 0.0558 0.0870 0.0774

The shear viscosity of the expanded Rb is calculated from equation (12) by using
the values of the sum rules from table 2. The results obtained are given in table 3. The
experimental results as given in [8] are denoted byηexpt and those of Kahl and Kambayashi,
ηKK , are also given there for comparison. Here, it may be noted that Kahl and Kambayashi
obtained these results by fitting a memory function to the MD simulation data of the
transverse current–current correlation function. It can be seen from table 3 that our results
are close to experimental values except near the critical point where our results are about
30% off. This may be due to the use of the model memory function.

In order to see the importance of the three-particle contribution to the sum rules in
determining the shear viscosity, we have calculated it by taking into account only the
two-body contribution to the sum rules. The results thus obtained for shear viscosity are
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represented byη2 and are given in table 3. It can be seen from table 3 that the effect of
the triplet contribution in determining the shear viscosity is quite significant near the triple
point and it decreases with increasing temperature and decreasing density.

4. Summary and conclusion

In this paper we have numerically evaluated zeroth, second and fourth frequency sum rules
of the TSC function for expanded Rb for six thermodynamic states along the liquid–vapour
co-existence curve using the Ashcroft pseudopotential with Ichimaru–Utsumi screening and
the correspondingg(r). These sum rules and a phenomenological form of the memory
function within Mori–Zwanzig formalism have been used to study the state dependence
of the shear viscosity of expanded Rb. The results obtained have been compared with
experimental results and those of Kahl and Kambayashi. It is found that our results agree
well with the experimental data except near the critical point. Here it may be noted that
our work requires only the knowledge of the interaction potential.
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